Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
BMC Med Imaging ; 22(1): 114, 2022 06 25.
Article in English | MEDLINE | ID: covidwho-1951105

ABSTRACT

BACKGROUND: Epicardial adipose tissue (EAT) is known as an important imaging indicator for cardiovascular risk stratification. The present study aimed to determine whether the EAT volume (EV) and mean EAT attenuation (mEA) measured by non-contrast routine chest CT (RCCT) could be more consistent with those measured by coronary CT angiography (CCTA) by adjusting the threshold of fatty attenuation. METHODS: In total, 83 subjects who simultaneously underwent CCTA and RCCT were enrolled. EV and mEA were quantified by CCTA using a threshold of (N30) (- 190 HU, - 30 HU) as a reference and measured by RCCT using thresholds of N30, N40 (- 190 HU, - 40 HU), and N45 (- 190 HU, - 45 HU). The correlation and agreement of EAT metrics between the two imaging modalities and differences between patients with coronary plaques (plaque ( +)) and without plaques (plaque ( -)) were analyzed. RESULTS: EV obtained from RCCT showed very strong correlation with the reference (r = 0.974, 0.976, 0.972 (N30, N40, N45), P < 0.001), whereas mEA showed a moderate correlation (r = 0.516, 0.500, 0.477 (N30, N40, N45), P < 0.001). Threshold adjustment was able to reduce the bias of EV, while increase the bias of mEA. Data obtained by CCTA and RCCT both demonstrated a significantly larger EV in the plaque ( +) group than in the plaque ( -) group (P < 0.05). A significant difference in mEA was shown only by RCCT using a threshold of N30 (plaque ( +) vs ( -): - 80.0 ± 4.4 HU vs - 78.0 ± 4.0 HU, P = 0.030). The mEA measured on RCCT using threshold of N40 and N45 showed no significant statistical difference between the two groups (P = 0.092 and 0.075), which was consistent with the result obtained on CCTA (P = 0.204). CONCLUSION: Applying more negative threshold, the consistency of EV measurements between the two techniques improves and a consistent result can be obtained when comparing EF measurements between groups, although the bias of mEA increases. Threshold adjustment is necessary when measuring EF with non-contrast RCCT.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Adipose Tissue/diagnostic imaging , Computed Tomography Angiography , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Humans , Pericardium/diagnostic imaging , Tomography, X-Ray Computed/methods
3.
Biomark Med ; 16(12): 925-933, 2022 08.
Article in English | MEDLINE | ID: covidwho-1933499

ABSTRACT

Aim: This study investigated the prognostic value of epicardial adipose tissue volume (EATV) attenuation (EATA) in patients admitted to the intensive care unit for COVID-19. Materials & methods: C-reactive protein (CRP), fasting blood glucose (FBG), neutrophil and lymphocyte counts, neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-CRP ratio (LCR) were recorded. Receiver operator characteristic analysis was performed for EATV and EATA. Results: The study included 190 patients (65 deceased, 125 discharged, mean age 52.01 ± 9.6 years). The deceased group had significantly higher FBG and CRP values and significantly lower platelet count and LCR values. EATA (cut-off: -92.38 HU) and EATV (cut-off: 15.74 cm2) were significantly higher in the deceased group. EATV had a correlation with age, FBG, CRP, neutrophil, NLR and LCR, whereas EATA correlated with involvement on CT scan. Conclusion: EATV is associated with inflammatory parameters, whereas EATA is associated with CT scan involvement and can be used to predict mortality in young adult patients.


Subject(s)
COVID-19 , Adipose Tissue , Adult , Biomarkers , C-Reactive Protein/analysis , Humans , Lymphocytes , Middle Aged , Neutrophils , Pericardium/diagnostic imaging , Prognosis , Retrospective Studies , Young Adult
4.
Int J Infect Dis ; 120: 33-40, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1783422

ABSTRACT

OBJECTIVES: Epicardial adipose tissue (EAT) has been proposed to be an independent predictor of visceral adiposity. EAT measures are associated with coronary artery disease, diabetes, and chronic obstructive pulmonary disease, which are risk factors for COVID-19 poor prognosis. Whether EAT measures are related to COVID-19 severity and prognosis is controversial. METHODS: We searched 6 databases for studies until January 7, 2022. The pooled effects are presented as the standard mean difference (SMD) or weighted mean difference with 95% confidence intervals (CIs). The primary end point was COVID-19 severity. Adverse clinical outcomes were also assessed. RESULTS: A total of 13 studies with 2482 patients with COVID-19 were identified. All patients had positive reverse transcriptase-polymerase chain reaction results. All quantitative EAT measures were based on computed tomography. Patients in the severe group had higher EAT measures compared with the nonsevere group (SMD = 0.74, 95% CI: 0.29-1.18, P = 0.001). Patients with hospitalization requirement, requiring invasive mechanical ventilation, admitted to intensive care unit, or with combined adverse outcomes had higher EAT measures compared to their controls (all P < 0.001). CONCLUSIONS: EAT measures were associated with the severity and adverse clinical outcomes of COVID-19. EAT measures might help in prognostic risk stratification of patients with COVID-19.


Subject(s)
COVID-19 , Adipose Tissue/diagnostic imaging , Adipose Tissue/metabolism , Adiposity , Humans , Pericardium/diagnostic imaging , Pericardium/metabolism , Risk Factors
5.
Nat Rev Cardiol ; 19(9): 593-606, 2022 09.
Article in English | MEDLINE | ID: covidwho-1747217

ABSTRACT

Interest in epicardial adipose tissue (EAT) is growing rapidly, and research in this area appeals to a broad, multidisciplinary audience. EAT is unique in its anatomy and unobstructed proximity to the heart and has a transcriptome and secretome very different from that of other fat depots. EAT has physiological and pathological properties that vary depending on its location. It can be highly protective for the adjacent myocardium through dynamic brown fat-like thermogenic function and harmful via paracrine or vasocrine secretion of pro-inflammatory and profibrotic cytokines. EAT is a modifiable risk factor that can be assessed with traditional and novel imaging techniques. Coronary and left atrial EAT are involved in the pathogenesis of coronary artery disease and atrial fibrillation, respectively, and it also contributes to the development and progression of heart failure. In addition, EAT might have a role in coronavirus disease 2019 (COVID-19)-related cardiac syndrome. EAT is a reliable potential therapeutic target for drugs with cardiovascular benefits such as glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter 2 inhibitors. This Review provides a comprehensive and up-to-date overview of the role of EAT in cardiovascular disease and highlights the translational nature of EAT research and its applications in contemporary cardiology.


Subject(s)
Atrial Fibrillation , COVID-19 , Cardiology , Adipose Tissue/diagnostic imaging , Humans , Pericardium/diagnostic imaging , Pericardium/pathology
6.
Int J Obes (Lond) ; 46(4): 866-873, 2022 04.
Article in English | MEDLINE | ID: covidwho-1635369

ABSTRACT

BACKGROUND: Increased adiposity and visceral obesity have been linked to adverse COVID-19 outcomes. The amount of epicardial adipose tissue (EAT) may have relevant implications given its proximity to the heart and lungs. Here, we explored the role of EAT in increasing the risk for COVID-19 adverse outcomes. METHODS: We included 748 patients with COVID-19 attending a reference center in Mexico City. EAT thickness, sub-thoracic and extra-pericardial fat were measured using thoracic CT scans. We explored the association of each thoracic adipose tissue compartment with COVID-19 mortality and severe COVID-19 (defined as mortality and need for invasive mechanical ventilation), according to the presence or absence of obesity. Mediation analyses evaluated the role of EAT in facilitating the effect of age, body mass index and cardiac troponin levels with COVID-19 outcomes. RESULTS: EAT thickness was associated with increased risk of COVID-19 mortality (HR 1.18, 95% CI 1.01-1.39) independent of age, gender, comorbid conditions and BMI. Increased EAT was associated with lower SpO2 and PaFi index and higher levels of cardiac troponins, D-dimer, fibrinogen, C-reactive protein, and 4 C severity score, independent of obesity. EAT mediated 13.1% (95% CI 3.67-28.0%) and 5.1% (95% CI 0.19-14.0%) of the effect of age and 19.4% (95% CI 4.67-63.0%) and 12.8% (95% CI 0.03-46.0%) of the effect of BMI on requirement for intubation and mortality, respectively. EAT also mediated the effect of increased cardiac troponins on myocardial infarction during COVID-19. CONCLUSION: EAT is an independent risk factor for severe COVID-19 and mortality independent of obesity. EAT partly mediates the effect of age and BMI and increased cardiac troponins on adverse COVID-19 outcomes.


Subject(s)
COVID-19 , Adipose Tissue/diagnostic imaging , Adipose Tissue/metabolism , Adiposity , Adult , Body Mass Index , Humans , Pericardium/diagnostic imaging , Pericardium/metabolism , Young Adult
7.
Endocrine ; 75(1): 10-18, 2022 01.
Article in English | MEDLINE | ID: covidwho-1499516

ABSTRACT

PURPOSE: To study the possible association of CT-derived quantitative epicardial adipose tissue (EAT) and glycemia at the admission, with severe outcomes in patients with COVID-19. METHODS: Two hundred and twenty-nine patients consecutively hospitalized for COVID-19 from March 1st to June 30th 2020 were studied. Non contrast chest CT scans, to confirm diagnosis of pneumonia, were performed. EAT volume (cm3) and attenuation (Hounsfield units) were measured using a CT post-processing software. The primary outcome was acute respiratory distress syndrome (ARDS) or in-hospital death. RESULTS: The primary outcome occurred in 56.8% patients. Fasting blood glucose was significantly higher in the group ARDS/death than in the group with better prognosis [114 (98-144) vs. 101 (91-118) mg/dl, p = 0.001]. EAT volume was higher in patients with vs without the primary outcome [103 (69.25; 129.75) vs. 78.95 (50.7; 100.25) cm3, p < 0.001] and it was positively correlated with glycemia, PCR, fibrinogen, P/F ratio. In the multivariable logistic regression analysis, age and EAT volume were independently associated with ARDS/death. Glycemia and EAT attenuation would appear to be factors involved in ARDS/death with a trend of statistical significance. CONCLUSIONS: Our findings suggest that both blood glucose and EAT, easily measurable and modifiable targets, could be important predisposing factors for severe Covid-19 complications.


Subject(s)
Blood Glucose , COVID-19 , Adipose Tissue/diagnostic imaging , Hospital Mortality , Hospitals , Humans , Pericardium/diagnostic imaging , SARS-CoV-2
8.
Kardiologiia ; 61(8): 48-53, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1436434

ABSTRACT

Aim    High sensitive troponin (hs-TnI) levels may increase secondary to Coronavirus disease-2019 (COVID-19), and this increase is associated with cardiovascular mortality in COVID-19 patients. Epicardial adipose tissue (EAT) is associated with myocardial injury directly as a reservoir tissue for coronavirus, and indirectly through mediators it secretes as an apocrine gland. We aimed to evaluate the relationship between myocardial injury secondary to COVID-19 infection and EAT thickness.Material and methods    Thoracic computed tomography (CT) was performed in 73 consecutive patients diagnosed with COVID-19. EAT thickness and volume were calculated by two radiologists blind to the study data. We formed two groups according to hs-TnI concentrations, patients with myocardial damage (hs-TnI ≥11.6 ng / l) and without myocardial damage (hs-TnI<11.6 ng / dl).Results    A total of 46 patients were women (63.0 %). The mean age was 66.4±12.3 yrs in the myocardial injury group and 55.9±9.7 yrs in the group without myocardial injury (p<0.001). There were 20 hypertensive patients (68.9 %) in the injury group, while there were 12 hypertensive patients (27.3 %) in the group without injury (p=0.001). Glucose, C-reactive protein, D-dimer, white blood cell count, neutrophil, and neutrophil / lymphocyte ratio were higher in the injury group (p<0.05, for all variables). The mean EAT thickness was 5.6±1.6 mm in the injury group, whereas it was 4.8±1.8 mm in the group without injury (p=0.031). EAT thickness of 4.85 mm and above was associated with the myocardial injury with 65 % sensitivity and 39 % specificity (AUC=0.65, 95 % CI: 0.52-078, p=0.031).Conclusion    In patients with COVID-19 infection, higher rates of myocardial injury were observed as the EAT thickness increased. Epicardial adipose tissue, contributes to cytokine-mediated myocardial injury either directly or indirectly by acting as a reservoir for coronavirus. Increased EAT thickness is associated with myocardial injury in COVID-19 patients.


Subject(s)
COVID-19 , Adipose Tissue/diagnostic imaging , Aged , Female , Humans , Middle Aged , Myocardium , Pericardium/diagnostic imaging , SARS-CoV-2
10.
Cardiovasc Diabetol ; 20(1): 147, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1319480

ABSTRACT

BACKGROUND: Both visceral adipose tissue and epicardial adipose tissue (EAT) have pro-inflammatory properties. The former is associated with Coronavirus Disease 19 (COVID-19) severity. We aimed to investigate whether an association also exists for EAT. MATERIAL AND METHODS: We retrospectively measured EAT volume using computed tomography (CT) scans (semi-automatic software) of inpatients with COVID-19 and analyzed the correlation between EAT volume and anthropometric characteristics and comorbidities. We then analyzed the clinicobiological and radiological parameters associated with severe COVID-19 (O2 [Formula: see text] 6 l/min), intensive care unit (ICU) admission or death, and 25% or more CT lung involvement, which are three key indicators of COVID-19 severity. RESULTS: We included 100 consecutive patients; 63% were men, mean age was 61.8 ± 16.2 years, 47% were obese, 54% had hypertension, 42% diabetes, and 17.2% a cardiovascular event history. Severe COVID-19 (n = 35, 35%) was associated with EAT volume (132 ± 62 vs 104 ± 40 cm3, p = 0.02), age, ferritinemia, and 25% or more CT lung involvement. ICU admission or death (n = 14, 14%) was associated with EAT volume (153 ± 67 vs 108 ± 45 cm3, p = 0.015), hypertension and 25% or more CT lung involvement. The association between EAT volume and severe COVID-19 remained after adjustment for sex, BMI, ferritinemia and lung involvement, but not after adjustment for age. Instead, the association between EAT volume and ICU admission or death remained after adjustment for all five of these parameters. CONCLUSIONS: Our results suggest that measuring EAT volume on chest CT scans at hospital admission in patients diagnosed with COVID-19 might help to assess the risk of disease aggravation.


Subject(s)
Adipose Tissue/diagnostic imaging , COVID-19/diagnostic imaging , Pericardium/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Female , Humans , Intensive Care Units , Lung/diagnostic imaging , Male , Middle Aged , Patient Admission , Predictive Value of Tests , Prognosis , Retrospective Studies , Severity of Illness Index
11.
J Interv Card Electrophysiol ; 64(2): 383-391, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1298584

ABSTRACT

PURPOSE: Coronary artery calcium (CAC) and epicardial adipose tissue (EAT) can predict AF in the general population. We aimed to determine if CAC and EAT measured by computed tomographic (CT) scanning can predict new-onset AF in patients admitted with COVID-19 disease. METHODS: We performed a retrospective, post hoc analysis of all patients admitted to Montefiore Medical Center with a confirmed COVID-19 diagnosis from March 1st to June 23rd, 2020, who had a non-contrast CT of the chest within 5 years prior to admission. We determined ordinal CAC scores and quantified the EAT volume and examined their relationship with inpatient mortality. RESULTS: A total of 379 patients were analyzed. There were 16 events of new-onset AF (4.22%). Patients who developed AF during the index admission were more likely to be male (75 vs 47%, p < 0.001) and had higher EAT (129.5 [76.3-197.3] vs 91.0 [60.0-129.0] ml, p = 0.049). There were no differences on age (68 [56-71] vs 68 [58-76] years; p = 0.712), BMI (28.5 [25.3-30.8] vs 26.9 [23.1-31.8] kg/m2; p = 0.283), ordinal CAC score (3 [1-6] vs 2 [0-4]; p = 0.482), or prevalence of diabetes (56.3 vs 60.1%; p = 0.761), hypertension (75.0 vs 87.3%, p = 0.153), or coronary artery disease (50.0 vs 39.4%, p = 0.396). Patients with new-onset AF had worse clinical outcomes (death/intubation/vasopressors) (87.5 vs 44.1%; p = 0.001). CONCLUSION: Increased EAT measured by non-contrast chest CT identifies patients hospitalized with COVID-19 at higher risk of developing new-onset AF. Patients with new-onset AF have worse clinical outcomes.


Subject(s)
Atrial Fibrillation , COVID-19 , Adipose Tissue/diagnostic imaging , Aged , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/epidemiology , COVID-19 Testing , Female , Humans , Incidence , Male , Middle Aged , Pericardium/diagnostic imaging , Retrospective Studies , Risk Factors
12.
Curr Cardiol Rep ; 23(7): 90, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1252215

ABSTRACT

PURPOSE OF REVIEW: Coronavirus disease 2019 (COVID19) involves the heart, including pericardium. This article reviews the possible pathophysiological mechanisms in pericardial involvement in COVID19 and pericardial manifestations of COVID19. It also summarizes the patients with pericarditis secondary to COVID19 and outlines the contemporary treatment strategies in this patient population. RECENT FINDINGS: A high degree of suspicion is required to identify the pericardial involvement in COVID19 patients. It is proposed that an underlying hyperinflammatory reaction in COVID19 leads to pericardial inflammation. Acute pericarditis with or without myocardial involvement is diagnosed on clinical presentation, serum inflammatory markers, electrocardiogram, and echocardiogram. Multimodality imaging may also have an additional diagnostic value. Patients are usually managed medically, but some patients develop a life-threatening pericardial tamponade necessitating pericardial drainage. Pericardial involvement is an important clinical manifestation of COVID19 requiring a proper workup. Timely diagnosis and a specific management plan based on the presentation and concomitant organ involvement usually lead to a complete recovery.


Subject(s)
COVID-19 , Cardiac Tamponade , Pericardial Effusion , Pericarditis , Cardiac Tamponade/diagnostic imaging , Cardiac Tamponade/etiology , Humans , Pericarditis/diagnostic imaging , Pericarditis/therapy , Pericardium/diagnostic imaging , SARS-CoV-2
13.
J Med Case Rep ; 15(1): 305, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1247597

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been shown to have extensive effects on the cardiovascular system. Its long-term cardiac manifestations, however, remain unclear. CASE PRESENTATION: We report the case of a Caucasian patient with a mild and self-limited presentation of COVID-19, with subsequent development, months later, of exertional dyspnea and non-sustained ventricular tachycardia, long after resolution of his illness and after returning to aerobic exercise. The patient had normal screening tests including electrocardiogram (ECG) and echocardiogram 4 months after his illness. Cardiac magnetic resonance imaging demonstrated epicardial and pericardial fibrosis of the right ventricle free wall and outflow tract and the pericardium over the anterior wall, 6 months following the initial infection. First abnormal ECG was recorded at month 7 following illness. CONCLUSIONS: This case suggests an insidious and possible long-term cardiac involvement and reflects the challenges in traditional workups and screening modalities in identifying cardiac involvement in COVID-19.


Subject(s)
COVID-19 , Tachycardia, Ventricular , Fibrosis , Humans , Pericardium/diagnostic imaging , SARS-CoV-2 , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/etiology
14.
Obesity (Silver Spring) ; 29(9): 1427-1433, 2021 09.
Article in English | MEDLINE | ID: covidwho-1239993

ABSTRACT

OBJECTIVE: Adipose tissue plays a role in the novel coronavirus disease 2019 (COVID-19). Epicardial adipose tissue (EAT), a unique visceral fat, presents with a high degree of inflammation in severe COVID-19. Whether and how adipose tissue may respond to the COVID-19 therapies is unknown. METHODS: The difference in computed tomography-measured EAT and subcutaneous (SAT) attenuation, defined as mean attenuation expressed in Hounsfield units (HU), was retrospectively analyzed in 72 patients (mean [SD] age was 59.6 [12.4] years, 50 patients [69%] were men) at the hospital admission for COVID-19 and 99 days (interquartile range = 71-129) after discharge. RESULTS: At the admission, EAT-HU was significantly correlated with blood glucose levels, interleukin 6, troponin T levels, and waist circumference. EAT-HU decreased from -87.21 (16.18) to -100.0 (11) (p < 0.001), whereas SAT-HU did not change (-110.21 [12.1] to -111.11 [27.82]; p = 0.78) after therapy. Changes in EAT-HU (expressed as ∆) significantly correlated with dexamethasone therapy (r = -0.46, p = 0.006) and when dexamethasone was combined with tocilizumab (r = -0.24, p = 0.04). CONCLUSIONS: Dexamethasone therapy was associated with significant reduction of EAT inflammation in COVID-19 patients, whereas SAT showed no changes. Anti-inflammatory therapies targeting visceral fat may be helpful in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/therapeutic use , Intra-Abdominal Fat , Pericardium , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Female , Humans , Inflammation , Intra-Abdominal Fat/diagnostic imaging , Male , Middle Aged , Pericardium/diagnostic imaging , Retrospective Studies
15.
Int J Cardiovasc Imaging ; 37(10): 3093-3100, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1224996

ABSTRACT

Recent epidemiological studies have demonstrated that common cardiovascular risk factors are strongly associated with adverse outcomes in COVID-19. Coronary artery calcium (CAC) and epicardial fat (EAT) have shown to outperform traditional risk factors in predicting cardiovascular events in the general population. We aim to determine if CAC and EAT determined by Computed Tomographic (CT) scanning can predict all-cause mortality in patients admitted with COVID-19 disease. We performed a retrospective, post-hoc analysis of all patients admitted to Montefiore Medical Center with a confirmed COVID-19 diagnosis from March 1st, 2020 to May 2nd, 2020 who had a non-contrast CT of the chest within 5 years prior to admission. We determined ordinal CAC scores and quantified the epicardial (EAT) and thoracic (TAT) fat volume and examined their relationship with inpatient mortality. A total of 493 patients were analyzed. There were 197 deaths (39.95%). Patients who died during the index admission had higher age (72, [64-80] vs 68, [57-76]; p < 0.001), CAC score (3, [0-6] vs 1, [0-4]; p < 0.001) and EAT (107, [70-152] vs 94, [64-129]; p = 0.023). On a competing risk analysis regression model, CAC ≥ 4 and EAT ≥ median (98 ml) were independent predictors of mortality with increased mortality of 63% (p = 0.003) and 43% (p = 0.032), respectively. As a composite, the group with a combination of CAC ≥ 4 and EAT ≥ 98 ml had the highest mortality. CAC and EAT measured from chest CT are strong independent predictors of inpatient mortality from COVID-19 in this high-risk cohort.


Subject(s)
COVID-19 , Coronary Artery Disease , Vascular Calcification , Adipose Tissue/diagnostic imaging , COVID-19 Testing , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Pericardium/diagnostic imaging , Predictive Value of Tests , Retrospective Studies , Risk Factors , SARS-CoV-2 , Vascular Calcification/diagnostic imaging
16.
Metabolism ; 115: 154436, 2021 02.
Article in English | MEDLINE | ID: covidwho-933369

ABSTRACT

AIM: We sought to examine the association of epicardial adipose tissue (EAT) quantified on chest computed tomography (CT) with the extent of pneumonia and adverse outcomes in patients with coronavirus disease 2019 (COVID-19). METHODS: We performed a post-hoc analysis of a prospective international registry comprising 109 consecutive patients (age 64 ±â€¯16 years; 62% male) with laboratory-confirmed COVID-19 and noncontrast chest CT imaging. Using semi-automated software, we quantified the burden (%) of lung abnormalities associated with COVID-19 pneumonia. EAT volume (mL) and attenuation (Hounsfield units) were measured using deep learning software. The primary outcome was clinical deterioration (intensive care unit admission, invasive mechanical ventilation, or vasopressor therapy) or in-hospital death. RESULTS: In multivariable linear regression analysis adjusted for patient comorbidities, the total burden of COVID-19 pneumonia was associated with EAT volume (ß = 10.6, p = 0.005) and EAT attenuation (ß = 5.2, p = 0.004). EAT volume correlated with serum levels of lactate dehydrogenase (r = 0.361, p = 0.001) and C-reactive protein (r = 0.450, p < 0.001). Clinical deterioration or death occurred in 23 (21.1%) patients at a median of 3 days (IQR 1-13 days) following the chest CT. In multivariable logistic regression analysis, EAT volume (OR 5.1 [95% CI 1.8-14.1] per doubling p = 0.011) and EAT attenuation (OR 3.4 [95% CI 1.5-7.5] per 5 Hounsfield unit increase, p = 0.003) were independent predictors of clinical deterioration or death, as was total pneumonia burden (OR 2.5, 95% CI 1.4-4.6, p = 0.002), chronic lung disease (OR 1.3 [95% CI 1.1-1.7], p = 0.011), and history of heart failure (OR 3.5 [95% 1.1-8.2], p = 0.037). CONCLUSIONS: EAT measures quantified from chest CT are independently associated with extent of pneumonia and adverse outcomes in patients with COVID-19, lending support to their use in clinical risk stratification.


Subject(s)
Adipose Tissue/diagnostic imaging , COVID-19/complications , COVID-19/diagnostic imaging , Pericardium/diagnostic imaging , Pneumonia/diagnostic imaging , Pneumonia/etiology , Adipose Tissue/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/mortality , Cost of Illness , Critical Care/statistics & numerical data , Female , Humans , Male , Middle Aged , Patient Admission/statistics & numerical data , Pericardium/metabolism , Pneumonia/mortality , Prognosis , Prospective Studies , Registries , Risk Assessment , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL